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ABSTRACT
This paper describes the applications of deep learning-based image
recognition in the DARPA Memex program and its repository of
1.4 million weapons-related images collected from the Deep web.
We develop a fast, efficient, and easily deployable framework for
integrating Google’s Tensorflow framework with Apache Tika for
automatically performing image forensics on the Memex data. Our
framework and its integration are evaluated qualitatively and quan-
titatively and our work suggests that automated, large-scale, and
reliable image classification and forensics can be widely used and
deployed in bulk analysis for answering domain-specific questions.
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1 INTRODUCTION
Over the past two years, our research team has borne witness
to the ease and availability of potentially criminal goods and ser-
vices on the modern Internet. In particular, our team’s work on
the DARPA Memex project has focused on the issues of online
gun sales, as such sales can have grim consequences in that they
provide a medium for buyers and sellers to circumvent traditional
background checks. In turn, this proliferates the sale of dangerous
semi-automatic weapons and can lead directly to loss of human life.
For instance, a New York Police Department (NYPD) investigation
in 2013 identified guns used in one suicide and four murders and
traced their origin to transactions on the website armslist.com[16].

The ability to rapidly and automatically monitor these types of
gun transactions is a significant challenge. In addition to Armslist,
there are hundreds of both national and regional gun sales sites

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MFSec ’17, June 6, 2017, Bucharest, Romania
© 2017 Copyright held by the owner/author(s). ISBN 978-1-4503-5034-1/17/06. . . $15.00.
DOI: http://dx.doi.org/10.1145/XXXXXXX.XXXXXXX

like floridaguntrader.com or gunbroker.com. And though the ads,
like the whole Internet, contain a large amount of text [15], the
proliferation of images necessitates object recognition and image
analysis at scale. This is especially important because the actual
content required to answer significant questions regarding these
weapons (“is this an automatic weapon?”, “is this a long or a short
gun?”, “are there multiple weapons being sold?”) are the weapon
images and not the ad text. Our recent work in DARPA’s Memex ini-
tiative has expanded Apache Tika, a content detection and analysis
framework [10], to support such analysis.

We have previously worked on bulk image analysis from the
Deep web as it relates to human trafficking data [9] using the
Apache Tika. However, that work focused on image metadata foren-
sics as an alternative to image-pixel based analyses and object detec-
tion and recognition. Though metadata forensics were promising in
human trafficking, weapons required pixel-based analyses. Based
on our study of over 80 websites and online forums that special-
ize in the exchange of weapons, object recognition and computer
vision were needed to automatically discern whether or not the
guns being sold are automatic or semi-automatic, whether they
have been stolen (using serial-number identification), and whether
the transactions are potentially illegal. Automatically being able to
discern these types of object properties in bulk analyses of image
data has the potential to thwart crimes and, ultimately, to save lives.

Historically, the best object recognition systems were inaccu-
rate, but this has changed due to recent advancements in deep
neural networks, larger training datasets, and improved computing
resources. Tensorflow is a scalable, Python-based system and it
natively supports image recognition via its Inception model [1]. In-
ception provides a neural network trained on the ImageNet corpus
[7], a dataset of 14,197,122 images classified using text from the
WordNet taxonomy. The integration of Tensorflow with Tika batch
processing methods such as Tika Spark now enables Tensorflow
processing to be parallelized. The end result is a highly-scalable,
off-the-shelf system that can accurately identify and classify objects
in images into a thousand categories. This capability – combined
with Apache Tika’s native support for detecting thousands of file
formats and extracting their metadata and textual content – is an
attractive, automated solution that can perform bulk analysis in the
weapons domain, but more generally, in any context where text
and images are present and such analyses are required.

Despite its merit, this integration of Tensorflow with Tika pre-
sented a significant challenge: Tensorflow does not provide default
bindings to Java-based frameworks. Apache Tika is primarily writ-
ten in Java and thus integrating with Tensorflow is not straight-
forward like with other JVM-compatible libraries. Our research
directly addresses this and contributes several methods that make
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Figure 1: This diagram demonstrates how the integration of Tika and Tensorflow facilitates in-depth search across heterogeneous content
types. There are several extensions fo our object recognition implementation as well, including more refined categories, optical-character
recognition, and image similarity metrics.

Tensorflow easier to integrate into Java-based systems like Tika,
and any digital forensics system that can make a call to an appli-
cation programming interface (API). In this paper, we report on
our integration of Tika and Tensorflow using the weapons domain
as a motivating example. We also evaluate the integration in both
its robustness in object recognition without training beyond that
of ImageNet. Lastly, we demonstrate that Tensorflow and Tika to-
gether form a scalable forensics solution for bulk Deep web image
analysis.

2 DATA COLLECTION AND CONTENT
ANALYSIS IN MEMEX

Current commercial search engines provide generalized search
interfaces that allow users to search across a limited portion of
the web [14]. However, in the context of cyber security and law
enforcement, commercial search engines miss essential content
from the Deep and Dark web. Because it is hard to reach, this
content often harbors illicit activity. The goal ofMemex is to develop
software that can quickly and thoroughly collect, organize, and
search subsets of information relevant to individual domains of
interest.

The program’s initial focus was on human trafficking and the
trade and sale of illicit goods, and several enhanced web crawlers
were used to discover and retrieve information from the websites
related to these domains. Along with the general-purpose web
crawlers, specialized crawlers were used for the retrieval of Dark
web data using The Onion Router (TOR) protocol [11] and also
specialized in the retrieval of dynamic AJAX content guarded by
login forms. Fetched data were then cached within the system for
analysis due to the ephemeral nature of the source (web) content.

The Memex data included 7.2 million items of content in the ille-
gal weapon sales domain, of which 1.4 million objects were images.
Before processing images, we analyzed the textual documents in a
separate experiment using named-entity recognition (NER) models
that extracted people, locations, organizations, weapon names, and
weapon types. Tika has recently added support for this task using
popular natural language processing (NLP) toolkits like Stanford

CoreNLP[3], Apache OpenNLP[12], and MIT Lincoln Lab’s MITIE
[13]. However, as we described in Section 1, our work has focused
on weapons images for two primary reasons: (1) web crawlers
generally extract any linked content from a site and ensuring that
images contain relevant objects was an important preprocessing
step, and (2) classifying image objects allows for the cataloguing of
specific objects of interest. With regard to number two, the queries
we sought to answer were related to automated identification of
(semi-)automatic weapons and illegal gun transactions – this often
requires direct analysis of the image rather than associated ad text.

The ultimate goal of integrating and characterizing diverse con-
tent scattered across the web is to provide law enforcement analysts
with tools that will help them quickly identify potentially illegal
activity, and images and videos often provide salient information
not available in text; in many cases, illegal weapons dealers inten-
tionally embed revealing details in rich content mediums because
they are harder to identify. The integration of Tensorflow and Tika
provides a single, streamlined platform that unites the extraction
of textual and rich content. This combined content can then be
exposed through search and visualization interfaces that improve
analysts’ abilities to drill-down and explore comprehensive, diverse
content contained in weapons ads (see Figure 1).

3 INTEGRATION
To integrate Tika and Tensorflow, we extended Tika’s Recogniser
interface which was introduced as part of our work in integrating
named-entity recognition (NER) toolkits described in the prior
section. Our new interface was called ObjectRecogniser. The goal
of ObjectRecogniser is to facilitate multiple implementations that
extend beyond Tensorflow and may include other deep learning
and object recognition frameworks in the future with additional
effort. The main component of this interface contract is a function
that accepts image data and returns a list of RecognisedObjects.

For our initial implementation of ObjectRecogniser, we cre-
ated a Python-based command line (CLI) tool as an entry point to
Tensorflow’s image recognition network. Apache Tika executed
in the JVM process where a new native process was created and
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Figure 2: Tika and Tensorflow Integration

destroyed. Tika then passed the image path as a command line
argument to the tool as shown in Figure 2 (a). The tool parsed
the arguments, passed the content to the Tensorflow network, and
reported the results by printing it to standard output. Tika’s parser
then reads the result from its output stream. We did not extend Ten-
sorflow’s existing ImageNet/Inception model training and simply
used it off-the-shelf and pre-configured in the Tensorflow Python
program.

Vendors recommend the Java Native Interface (JNI) for integrat-
ing native code libraries to Java frameworks[4]. JNI acts as glue
between bytecode instructions that run within the Java Virtual
Machine (JVM) and the native code instructions that run directly
on the CPU. At runtime, the bytecode of Tika (caller) and native
code of Tensorflow (callee) runs within a single process from the
operating system’s perspective as shown in Figure 2 (b). Theoret-
ically, this is the best way of merging the JVM world with native
code, however the merit acquired in terms of the qualitative and
quantitative metrics were not in our case worth the efforts.

The developers of the Tensorflow framework recommended us-
ing gRPC-based integration for the production systems[17]. gRPC
is a client-server based architecture in which caller acts as an RPC
client and callee operates as a server in a different address space.
Unlike traditional RPC frameworks, gRPC is a high-performance,
high-CPU, and bandwidth-efficient transport on top of HTTP/2 that
supports full duplex streaming[6]. In our case, we embedded gRPC
client in Tika JVM and exported Tensorflow image recognition capa-
bilities as remote procedures via gRPC service. We used Tensorflow
Serving, a gRPC server implemented in C++, and also created a
Docker container to host it. Collecting the needed libraries to build
the gRPC interface proved to be a non-trivial effort, and rather
than require users of our Tika and Tensorflow integration to install
these libraries, we also investigated building a Representation State
Transfer (REST) interface [2].

REST is a client-server architecture paradigm for connecting
heterogeneous systems without the need for states [2, Chapter 5].
The REST application programming interfaces (API) is powered
by the HyperText Transfer Protocol (HTTP) which abstracts the
complexities of Transmission Control Protocol. We created a REST
API for Tensorflow image recognition using Python Flask. The
Flask-based HTTP service registered a TCP port and offered HTTP
API endpoints as shown in Figure 2 (d), and the REST interface

had the advantage of minimizing client dependencies for using our
framework. REST clients are lightweight and have easily installable
dependencies across all major programming languages. Our REST
API endpoint accepted HTTP POST requests with image data in
the request body. This service loaded the Inception v3 [19] model
during the initialization phase and held the model in memory for
reuse during the future HTTP Requests.

In the client side, Tika used TensorflowRESTRecogniser – an
implementation based on HTTPClient – to transfer image content
as HTTP Post request. The client parsed the JSON response from
REST API to retrieve the object names, IDs and confidence scores.
We also created a Docker specification for bootstrapping the Tensor-
flow image recognition REST API for semi-automated deployment
of the system. This presents a user-friendly client and server for
Tensorflow and Tika integration in which all needed dependencies
and capabilities for the integration are automatically provided.

4 EVALUATION
We carefully evaluated our integrations in several qualitative and
quantitative areas. For each of our integration interfaces (CLI, gRPC,
and REST API), we ran the integration against a single test image
fromWikipedia and measured the amount of time from passing the
image to Tika (and Tensorflow) to the return of a classification result
from the API. All single-image tests were run on an Ubuntu 14.04
LTSDocker container running onMacBook Pro 2013model (2.8GhZ
Core i7 and SSD storage) for test images of size 1024x768 pixels.
The slowest integration by far was the CLI integration which took
3 seconds to return a result, the fastest integration was the REST
integration at 253ms, about twice as fast as the gRPC integration
at 598ms. However, REST uses more bandwidth due to additional
meta-data introduced by HTTP headers in the packets, compared
to gRPC which does not require additional HTTP headers.

The REST integration benefited from a pre-loaded Inception v3
model, along with lightweight dependencies and low overhead. The
gRPC interface, while fast, suffered qualitatively from relying on
conflicting HTTP client library transitive dependencies, making
it difficult to integrate with some functionality from older HTTP
clients and reducing the number of platforms it successfully deploys
on. Though slow, the CLI has the advantage of not requiring both
a client and server, eliminating an additional point of failure in a
distributed setting. However, its sluggishness can be attributed to



MFSec ’17, , June 6, 2017, Bucharest, Romania T. Gowda, K. Hundman, C. Mattmann

Figure 3: Top 10 image classes found in the dataset. As more labeled
weapon images become available, we will be able to train a custom
classifier to classify weapons with more granularity.

the extra process created per invocation and the I/O for each call,
since the model file is loaded and unloaded for each process. In
addition, the Inception v3 model is approximately 200MB in size, so
there is 200MB of additional I/O per parse call. Thus, using a larger
model would result in more I/O time.

While we did explore JNI integrations in our interface, we didn’t
implement a full solution as we would have had to produce JNI
glue code for all platforms and additional utilities such as Google’s
ProtoBuffers – a dependency required by Tensorflow – would have
to be integrated with the JNI because ProtoBuffers is required for
deserializing models such as ImageNet/Inception[5]. The results
were encouraging both qualitatively and quantitatively; using the
REST interface, we were able to index the entire 1.4 million image
Memex weapons dataset in a little over four days and recommended
processing post-crawl.

In addition to qualitative and quantitative evaluation of our in-
tegration techniques, we also evaluated the results of our image
classification with respect to automatic processing of the Memex
weapons dataset using the REST API integration. We used the In-
ception v3 image classification model in our experiments [19]. This
model was trained on the 2012 ImageNet dataset, which contains
1000 classes of objects such as ‘tabby cat’, ‘lion’, ‘German shep-
herd’, etc.,[8, 18] including the three labels related our domain:
‘rifle’, ‘assault rifle’ and ‘revolver’. The ten most common classes in
our dataset and their frequencies are shown in Figure 3. Since the
crawlers were focused on retrieving web pages and linked images
related to weapons classifieds, the top classes in our dataset were
found to be revolver and rifle. Automatically identifying rifle in
this dataset was a promising result, as it gave investigators leads in
discerning whether these were long guns, which have been increas-
ingly used in weapons-related deaths over the past decade. Also
promising was the second most frequently occurring class, assault
rifle, which provides investigative leads into potentially automatic
weapons in the dataset.

We evaluated the predictions using a subset of 937 images labeled
by law enforcement agents, and the results are shown in Figure
4. The top k for k = 1, 3, 5, 7 considers a prediction as correct if
the human-annotated label is among the set of top k predicted
labels. We observed that the top 1 accuracy for the revolver class
is considerably lower. Manual inspection of labeled images and

Figure 4: Evaluation of results for the two weapon types: ‘revolver’
and ‘rifle.’ 937 images were labeled by law enforcement agents and
they didn’t distinguish between rifles and assault rifles. Theweapon
object should be the top class for all labeled images, however these
results demonstrate that the model occasionally identified back-
ground objects as primary.

prediction errors revealed that, due to revolvers being smaller, they
are often surrounded by holders and toolkits. The Inception model
often treated these larger surrounding objects as the predominant
label rather than the revolver label. Hence, the error counts are
reduced when k is increased. Going forward, our team is interested
in more granular distinctions and evaluations among weapon types.
Although the Inception v3 model identifies the assault rifle class,
these labels weren’t present in our evaluation data.

5 CONCLUSION
Our motivations for the integration of image forensics into content
analysis stems from a large corpus of 1.4 million weapons related
images from the DARPA Memex effort, and our goals of automat-
ically performing image classification to identify the illegal sale
of automatic weapons and other dangerous objects on the web.
We integrated the widely-used Google Tensorflow toolkit, and its
ImageNet/Inception v3 model with the Apache Tika framework
for automated and efficient image classification and analysis. We
qualitatively and quantitatively evaluated the feasibility of our in-
tegration and report on running the integration over the Memex
weapons data. We also describe our process for integrating Tensor-
flow and Tika.
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